

Faster and Stronger Lossless Compression with Optimized Autoregressive Framework

Yu Mao*, Jingzong Li*, Yufei Cui†, and Jason Chun Xue*

*Department of Computer Science, City University of Hong Kong †School of Computer Science, McGill University

We need a stronger compression algorithm to deal with the rapid growing trend.

Lossless compressors

- General-Purpose Lossless Compressors

Traditional	Deep-learning based		
 Gzip, 7z, Zstandard 	 Cmix, NNCP, Dzip, TRACE 		

Compression Ratio comparisons between traditional methods and deeplearning methods

Methods	Homogeneous Data Enwik9 Book Sound Image Float				Heterogeneous Data		
wieutous	Enwik9	Book	Sound	Image	Float	Silesia	Backup
Gzip	3.09	2.77	1.37	1.14	1.06	3.10	1.28
7z	4.35	3.80	1.59	1.38	1.14	4.25	1.56
Zstd-19	4.24	3.73	1.40	1.16	1.10	3.97	1.36
Dzip	4.47	3.95	2.04	1.72	1.26	4.78	1.78
TRACE	5.29	4.58	2.16	1.81	1.28	4.63	1.78
OREO	5.68	4.94	2.25	1.86	1.28	4.86	1.87
PAC	5.97	5.05	2.25	1.96	1.29	4.99	1.92

Deep-learning based compressor can obtain **much higher performance** than traditional methods, but with **significantly slow compression speeds.**

To Compress 1GB Data:

None Deep-learning compressor needs Several tens of seconds

- o Gzip**→**33s
- o 7z→60s
- o Zstd-19→321s
- o Zstd-FPGA→1.28s
- o LPAQ→85s

Deep-learning compressor needs several days

- $_{\circ}$ Cmix →25days
- o Tensorflow-compress→8days
- o NNCP→8days
- o Dzip→1.7days
- TRACE→14h
- o OREO→10h
- PAC →5h (2080Ti)

Two blind spot of current NN-based compressors

Duplicated processing problem

In-batch distribution variation problem

Duplicated processing problem

In-batch distribution variation problem

Whole compression framework

Learned Ordered Mask

A trainable 1D vector is introduced to dynamically learn the order information. The ordered importance is modeled as:

$$F(x_{i-1}), \dots, F(x_{i-k}) = W * \{F(x_{i-1}), \dots, F(x_{i-k})\}$$

where $F(x_{i-1})$ is the extracted feature of x_{i-1} and W is learned ordered importance.

This makes PAC's probability estimator a pure MLP architecture, which gives possibility for current general-purpose compressor to implement on other hardware.

Performance Evaluation

Compressor	Peak GPU Memory Usage (GB)	Inference (ms)	FLOPs
NNCP	7.75	95.67	15.83×10^{10}
Dzip	6.39	5.82	7.48×10^{10}
TRACE	2.02	2.08	0.34×10^{10}
OREO	1.18	1.54	0.12×10^{10}
PAC	1.07	1.54	0.1×10^{10}

(a) Host-GPU data transmit time. (b) Ordered mask generation time.

(c) Individual layer inference time.

Future Direction

Future directions in the field of compression could include:

- 1. Specialized Hardware Acceleration
- 2. Hybrid Compression Approaches
- 3. Fast Image Compression—We are working on it!

Our works

Mao Y, Li J, Cui Y, et al. Faster and Stronger Lossless Compression with Optimized Autoregressive Framework[C]//60th Design Automation Conference (DAC 2023): From Chips to Systems-Learn Today, Create Tomorrow. 2023.

Mao Y, Cui Y, Kuo T W, et al. TRACE: A Fast Transformer-based General-Purpose Lossless Compressor[C]//Proceedings of the ACM Web Conference 2022. 2022: 1829-1838.

Mao Y, Cui Y, Kuo T W, et al. Accelerating General-Purpose Lossless Compression via Simple and Scalable Parameterization[C]//Proceedings of the 30th ACM International Conference on Multimedia. 2022: 3205-3213.

Cui Y, Mao Y, Liu Z, et al. Variational Nested Dropout[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

