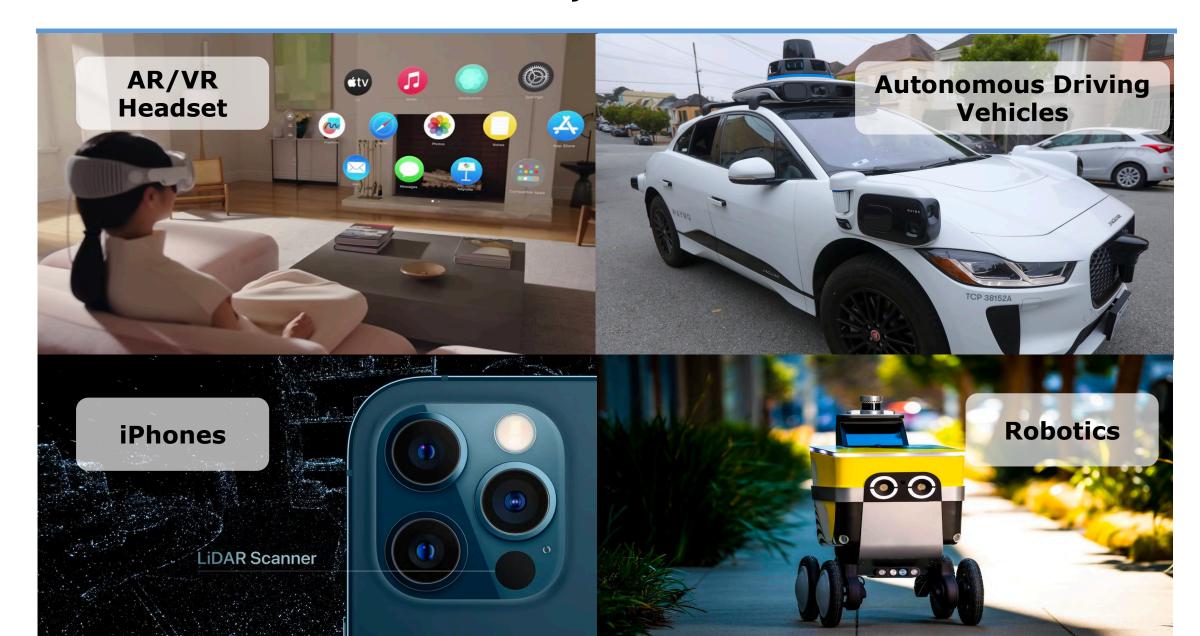
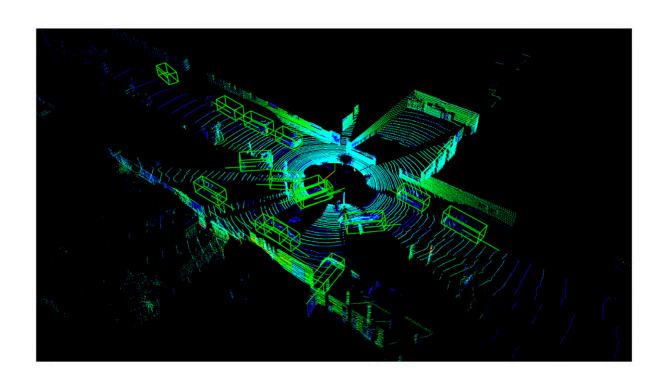
Moby: Empowering 2D Models for Efficient Point Cloud Analytics on the Edge

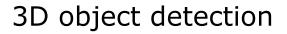
Jingzong Li, Yik Hong Cai, Libin Liu, Yu Mao, Chun Jason Xue, Hong Xu

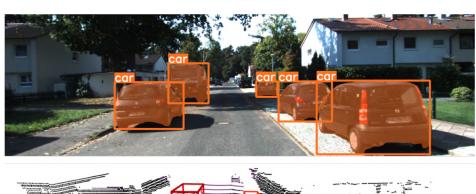
Point cloud data is everywhere

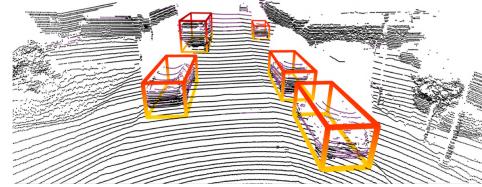


3D object detection is widely used in autonomous driving and robotics applications.









2D VS 3D object detection

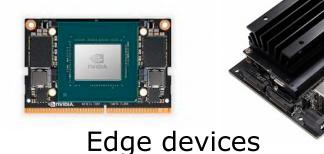
Efficiency is crucial for automotive driving and robotics applications

Logistics robot

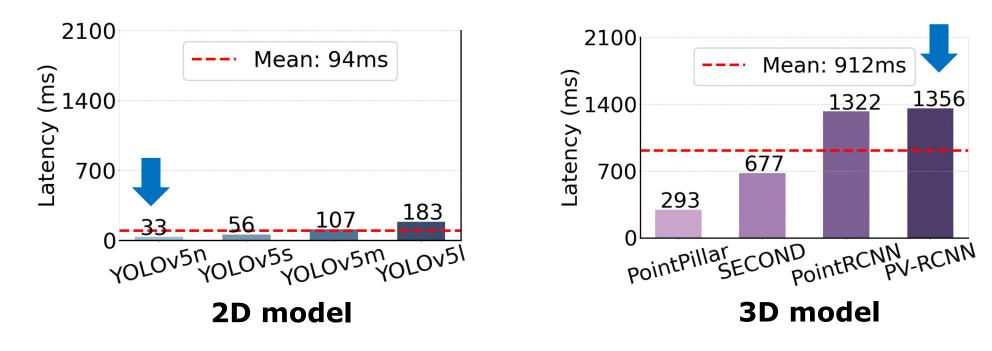
Food delivery robot

autonomous driving





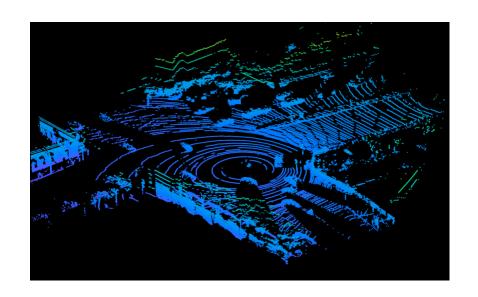
The latency of on-board inference on NVIDIA TX2:

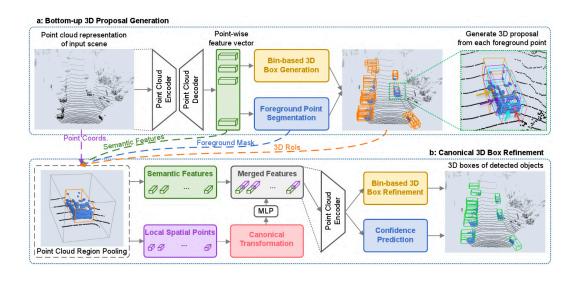


The average inference latency of 3D model is almost 10X that of 2D model

The inference latency of 3D detection model can be up to 41× of the 2D model

3D object detection is much more **compute-intensive** than 2D counterpart





Large amount of highly irregular, sparse, and unstructured data to process

More complicated architecture [1]

[1] Shi et al., PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019

What if we offload the task to the cloud server for processing?

What if we offload the task to the server?

We measure the end-to-end latency of offloading to cloud server

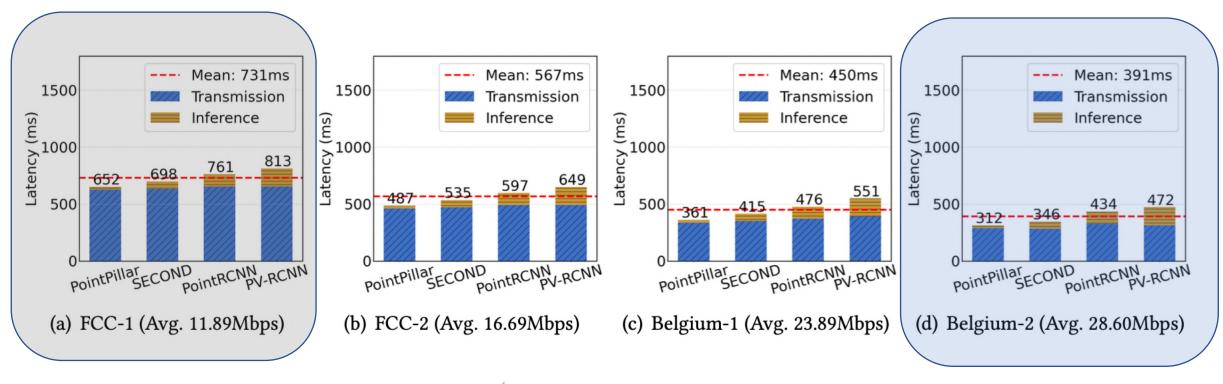
Four representative point cloud-based models:

Model	PointPillar	SECOND	PointRCNN	PV-RCNN
Feature Extraction	Voxel based	Voxel based	Point based	Point-voxel based
Network Architecture	One Stage	One Stage	Two Stages	Two Stages

Four real-world 4G/LTE network traces:

Trace (Mbps)	Mean (± Std)	Range	$P_{25\%}$	Median	P _{75%}
FCC-1	11.89 (± 2.83)	[7.76, 17.76]	9.09	12.08	13.42
FCC-2	16.69 (± 4.69)	[8.824, 28.157]	13.91	16.07	19.43
Belgium-1	23.89 (± 4.93)	[16.02, 33.33]	19.84	23.46	27.73
Belgium-2	29.60 (± 4.92)	[20.17, 37.345]	25.18	30.761	32.76

The transmission of point cloud dominates the end-to-end latency.



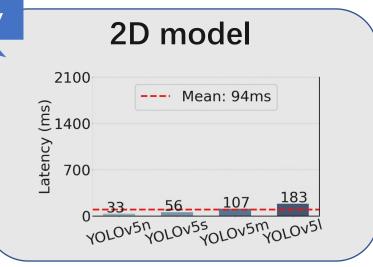
Latency grows

Network deteriorates

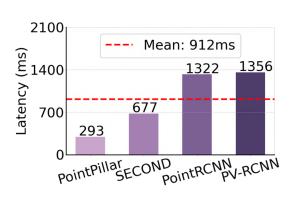
Offloading all frames to the cloud for inference is also impractical

Low latency

Significant lower inference time of 2D object detection

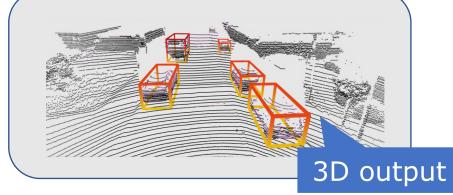


3D model



Close correspondence between the 2D and 3D bounding boxes





Can we use 2D detection models to extrapolate the 3D bounding boxes?

Edge-only

Cloud-only

Both ill-suited for 3D object detection

Can we better orchestrate the edge and cloud computation?

Main idea

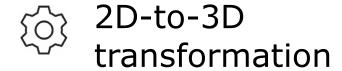
 Rather than relying on heavy DNN-based 3D detectors, we propose a light-weight 2D-to-3D transformation approach that generates 3D bounding boxes based on 2D model outputs.

- Challenge 1: At the frame level, how can Moby transform 2D bounding boxes into 3D ones accurately and efficiently?
- Evidently, this approach would require DNN-based 3D detection on a few **anchor frames** to provide the 3D information.

 Challenge 2: Across frames, as the error of transformation accumulates over time, how can Moby **monitor** the accuracy drop and **decide** the offloading timing?

Main idea

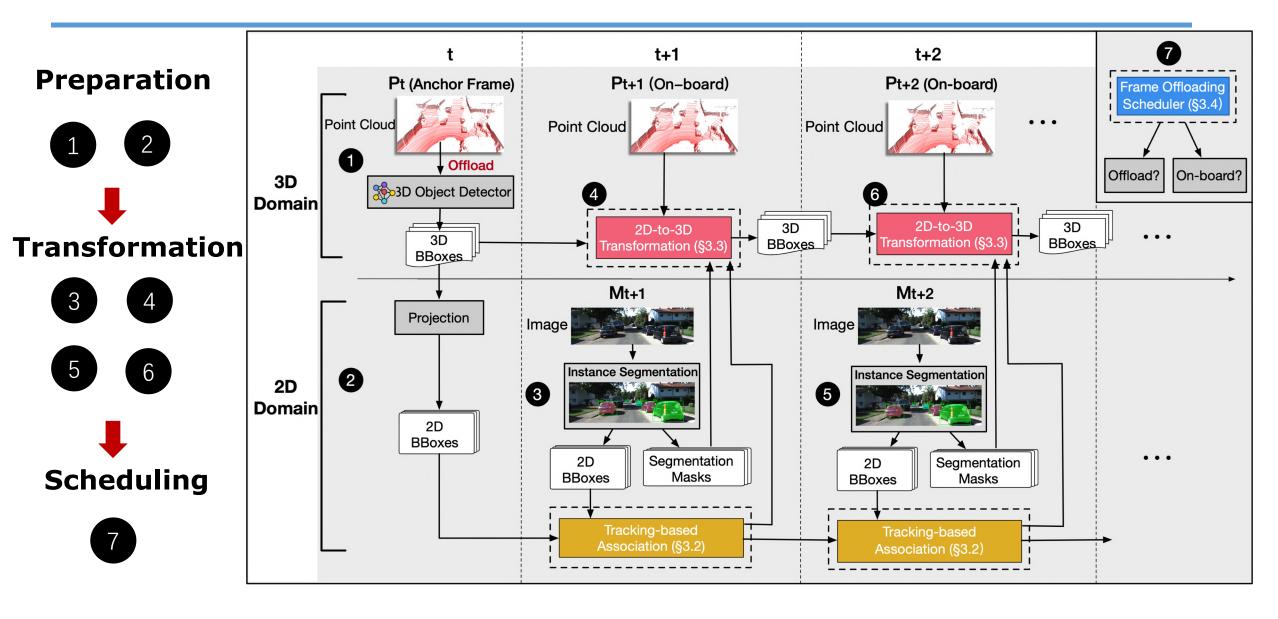
 Challenge 1: At the frame level, how can Moby transform 2D bounding boxes into 3D ones accurately and efficiently?



 Challenge 2: Across frames, as the error of transformation accumulates over time, how can Moby **monitor** the accuracy drop and **decide** the offloading timing?

Frame offloading scheduler

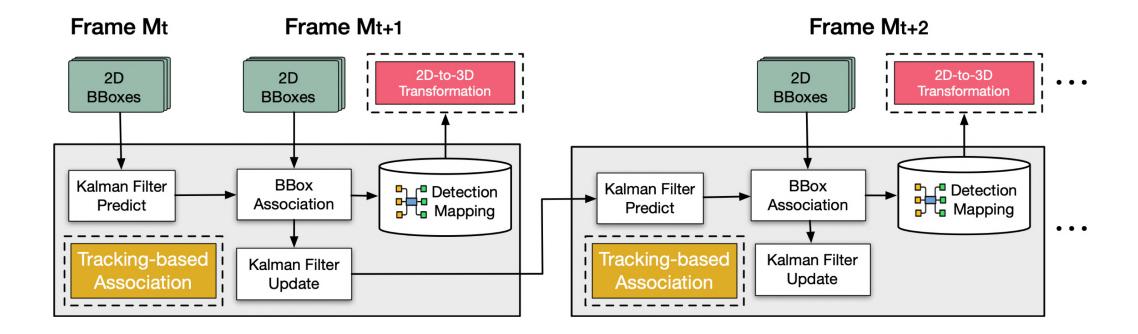
Moby's system workflow



Tracking-based Association

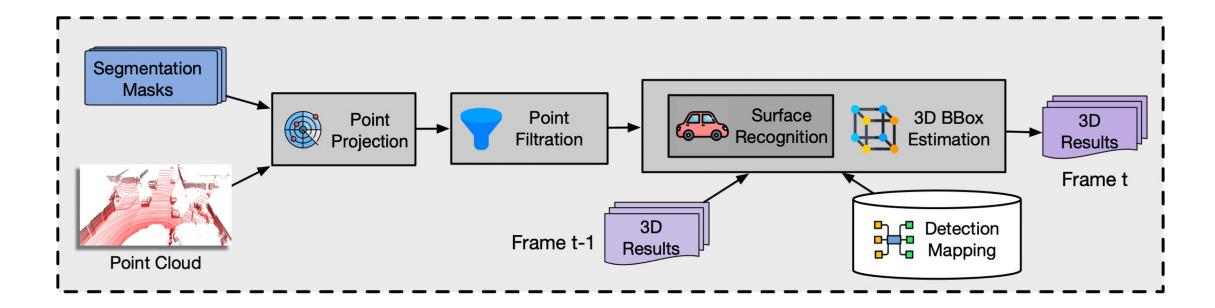
Utilizing tracking in the 2D domain to build the mapping between results in two adjacent frames.

- On-device 2D Inference
- Kalman Filter-based Tracking



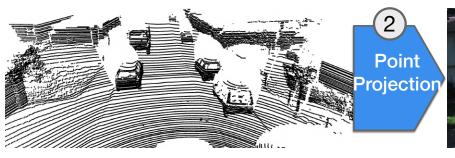
Transform bounding box from 2D domain to 3D domain

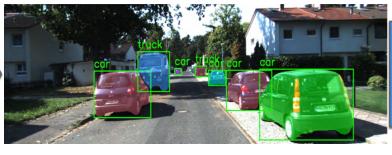
- Point Projection
- Point Filtration
- 3D bounding box estimation

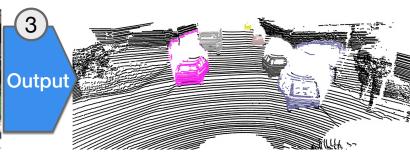


Point Projection

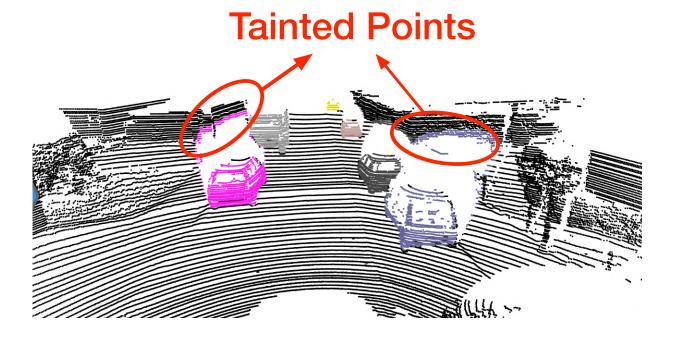
Transfer 2D semantics to 3D point cloud and obtain point clusters







Point Projection



Reasons for tainted points:

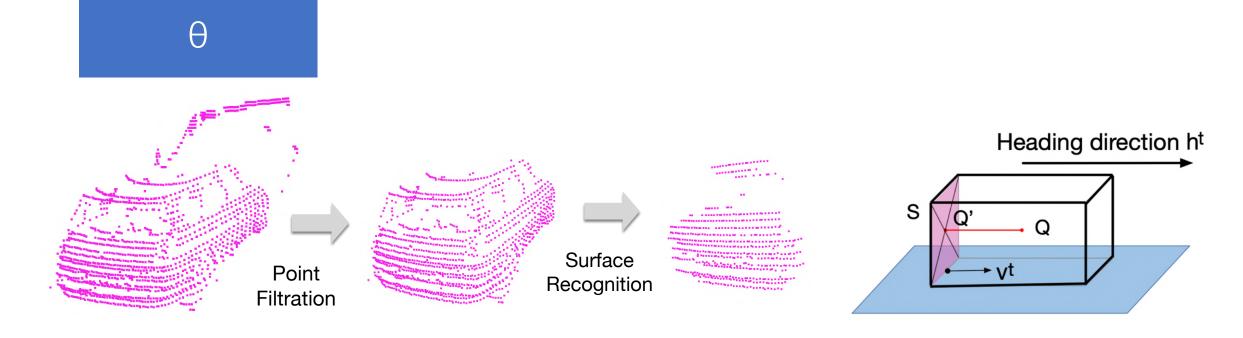
- Segmentation result is imperfect;
- The projection from point cloud to pixels is many to one.

3D Bounding Box Estimation

Estimate each object's 3D bounding box based on its point cluster

3D bounding box: $[x, y, z, l, w, h, \theta]$

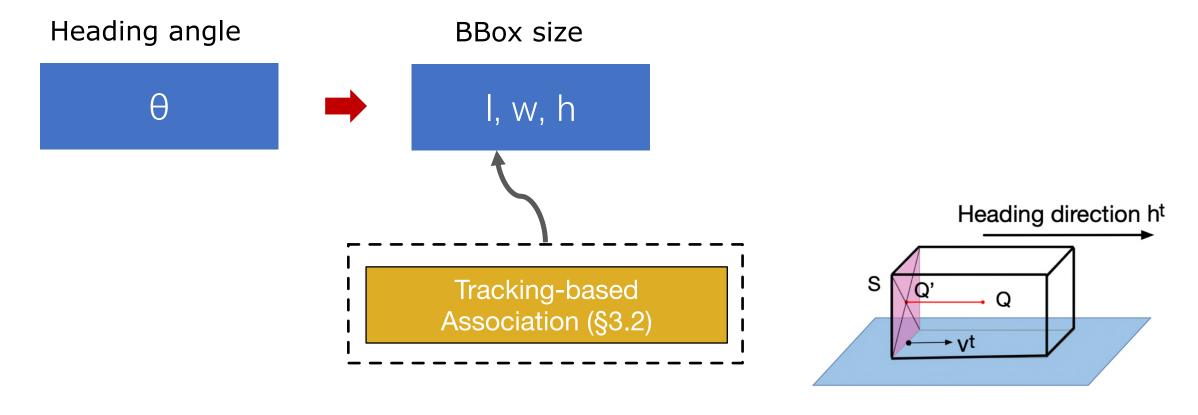
Heading angle



3D Bounding Box Estimation

Estimate each object's 3D bounding box based on its point cluster

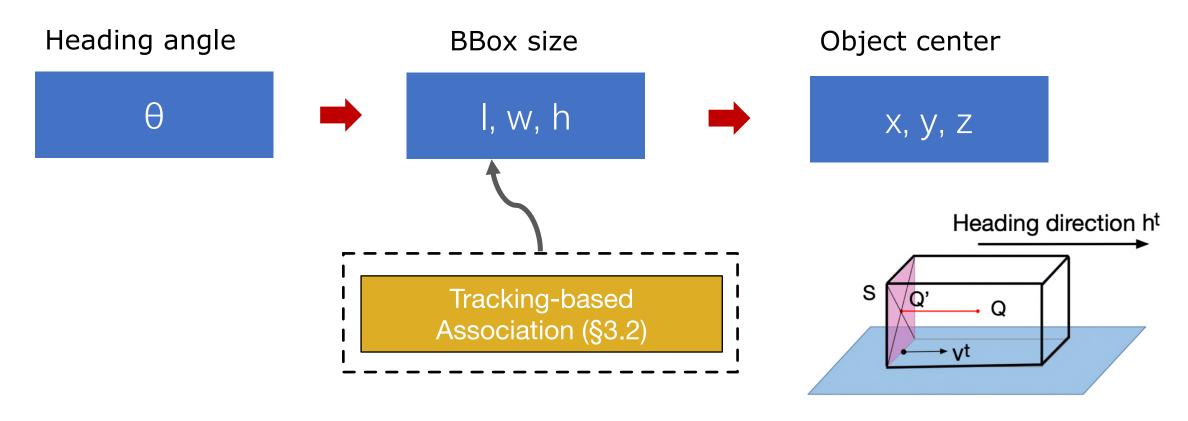
3D bounding box: $[x, y, z, l, w, h, \theta]$



3D Bounding Box Estimation

Estimate each object's 3D bounding box based on its point cluster

3D bounding box: $[x, y, z, l, w, h, \theta]$

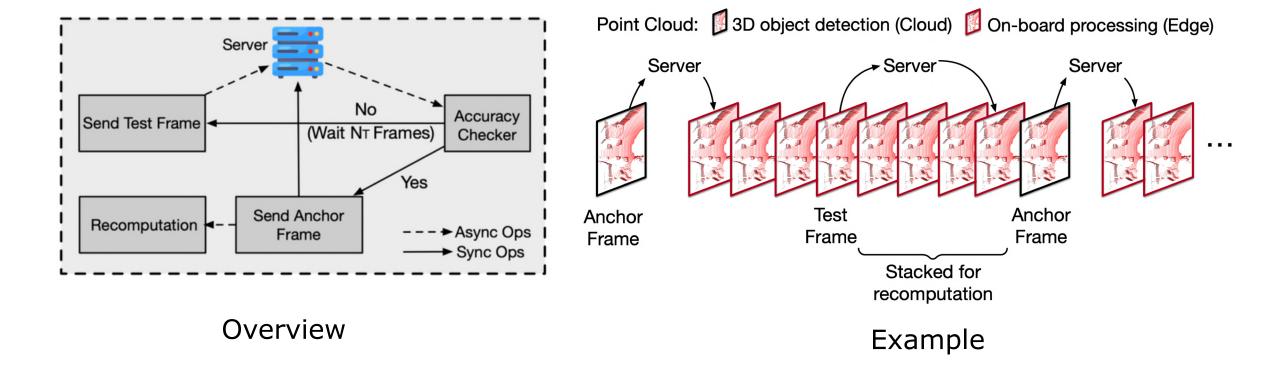


Frame Offloading Scheduler

Decide when to offload a new anchor frame to the cloud for processing

It must: 1) introduce little overhead, and 2) efficiently detecte error accumulation

Our solution: send a test frame to the cloud every N frames

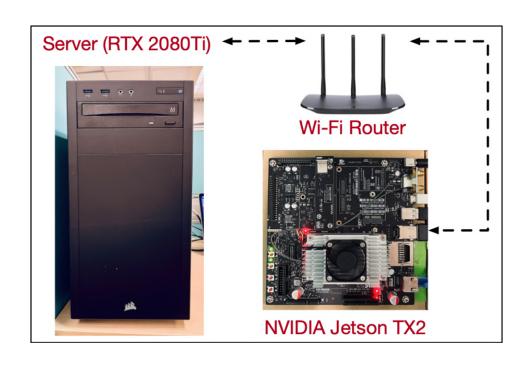


Evaluation - Experiment Settings

Testbed: We run our experiments using a <u>Jetson TX2</u> as the edge device and a desktop equipped with an Intel i7-9700K CPU and an <u>RTX 2080Ti</u> GPU as the server.

Dataset: KITTI dataset [1], a real-world autonomous driving benchmark.

Models: use <u>YOLOv5n</u> as Moby's default instance segmentation model, and the <u>same</u> 3D object detection model as the baseline systems.



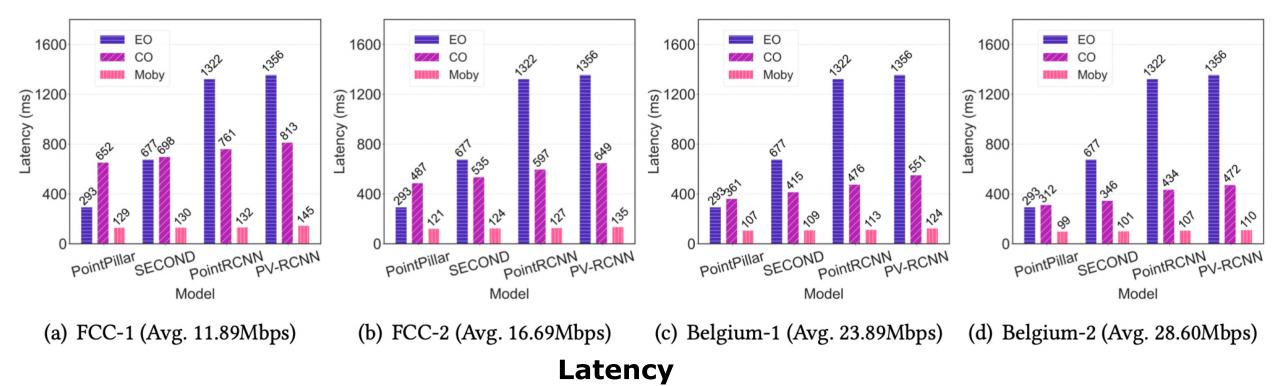
Metrics:

- End-to-end latency
- 3D Detection Accuracy (F1)

Evaluation - Deployment Approaches

Two deployment approaches:

- Edge Only (EO): 3D models are deployed on the edge device only to run inference.
- Cloud Only (CO): fully offloads point cloud over 4G/LTE networks to the server for inference.

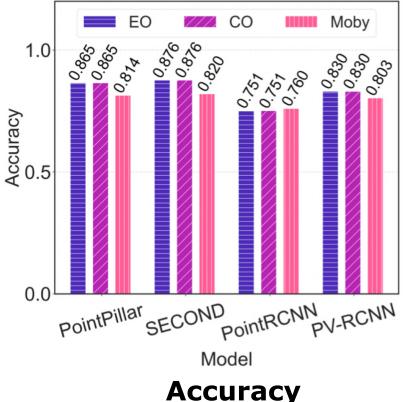


The latency reduction ranges from 56.0% to 91.9%.

Evaluation - Deployment Approaches

Two deployment approaches:

- Edge Only (EO)
- Cloud Only (CO)

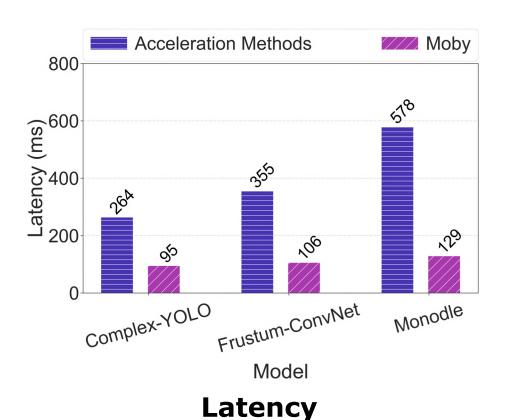


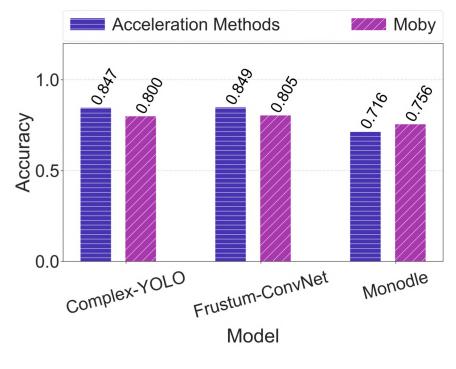
Accuracy

Evaluation – Acceleration Methods

Comparison of Moby and three acceleration methods:

- Complex-YOLO: converts point cloud data to birds-eye-view RGB maps
- Frustum-ConvNet: utilizes 2D region proposals to narrow down the 3D space
- Monodle: State-of-the-art image-based 3D detection approach





Accuracy

Evaluation – Impact of each component

Impact of each design component.

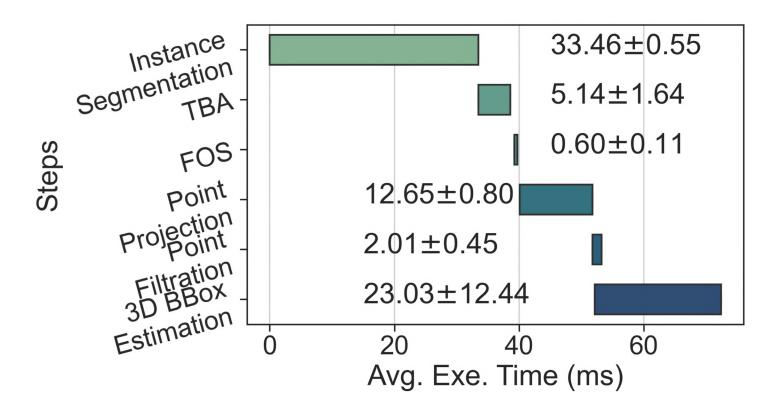
2D-to-3D transformation

+ Frame offloading scheduler

+ Tracking-based association

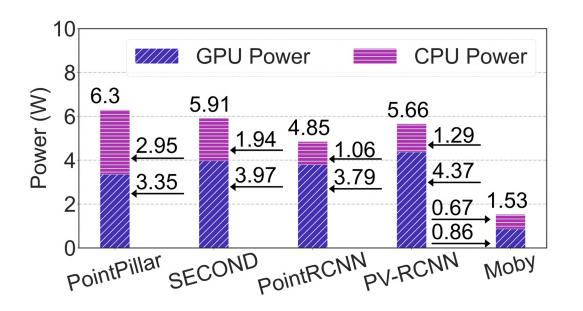
Components	Accuracy	Latency (ms)	On-board Latency (ms)
TRS	0.762	88.44	88.44
TRS+FOS	0.787	112.06	89.45
TRS+FOS+TBA	0.814	99.23	76.29

The avg. execution time of key steps over 300 runs

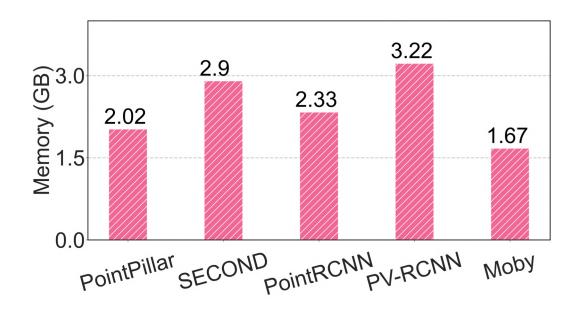


Evaluation – System Efficiency

Energy consumption



Memory footprint



Conclusion

- Problem: Point cloud analytics tasks pose severe burden for resource-constrained edge devices, edgeonly and cloud-only are both <u>ill-suited</u>.
- Our contribution: Moby, the first work to propose such 2D-to-3D transformation, which is capable of transferring vision semantics to 3D space and leveraging a light-weight geometric method to construct 3D bounding boxes swiftly and accurately.
- Results: Moby achieves <u>significant latency reduction</u> with only modest accuracy loss.