Alfie: Neural-Reinforced Adaptive Prefetching for Short Videos

Jingzong Li, Hong Xu *, Ming Ma, Haopeng Yan, Chun Jason Xue

The number of short video users has reached 873 million in China, representing 88.3% of its total netizens [1].

[1] Statistical Report on China's Internet Development in 2021, CNNIC

To provide **smooth playback** and avoid rebuffering delay, **prefetching** upcoming videos is commonly used in short videos.

However, **static policies** used in production lead to substantial **bandwidth overhead**, especially the **exit overhead**.

Goal: To quantify the bandwidth overhead of static prefetching.

Data Preparation: We collect a production trace of over **400 million** sessions of short video viewing for a **24-hour** period starting on March 1st, 2021 from a large short video company.

Schemes: we consider two representative instances of static policy:

- S-3-3: downloads the first 3 videos with first 3 chunks sequentially.
- **S-5-6**: downloads the first 5 videos with first 6 chunks sequentially.

Metrics:

- *T*: Rebuffering time (ms)
- D: Startup delay (ms): the lag between the user swiping and playing
- W_s : Swiping overhead (KB): downloaded but unwatched content due to user swiping
- W_e : Exit Overhead (KB): downloaded but unwatched content due to user exiting

Key Finding 1:

Static prefetching results in **significant bandwidth overhead**, including **exit overhead**.

Scheme	Daily Bandwidth Overhead (TB)	Daily Exit Overhead (TB) & Ratio	Annual Bandwidth Overhead Cost Range (\$1M USD)	Annual Exit Overhead Cost Range (\$1M USD)	
S-5-6	2795	1216 (43.5%)	[~41, ~122]	[~18, ~53]	
S-3-3	1738	365 (21.0%)	[~25, ~76]	[~5, ~16]	

Key Finding 2:

User watching behavior is **long-tailed**.

(a) CDF of number of short videos viewed in each session

(b) Histogram of number of videos viewed in each session.

Key Finding 3: Static policies do not adapt well.

(a) 2Mbps bandwidth

S-5-6

S-3-3

Overhead (KB)

4000

3000

Time (ms)

 \times

480

320

(c) Fast swiping

Alfie: a bandwidth-efficient short video prefetching algorithm that can dynamically adjust the prefetching strategy via **reinforcement learning**.

Reward Function Shaping: We design a reward function specialized for short video streaming.

$$R(S_i, A_i, S_{i+1}) = \begin{cases} R_{\text{idle}}(S_i, S_{i+1}), & \text{if } A_i = 0, \\ R_{\text{prefetch}}(S_i, A_i, S_{i+1}), & \text{otherwise.} \end{cases}$$

Slow Start Mechanism

Short Video Streaming Simulator

Please refer to the paper for details.

Algorithm 1 Calculation of reward R_{prefetch}

1: $h \leftarrow \text{GetVideoNum}(\text{VideoId}, \text{SessionTrace})$

will not be watched due to user exit

spent on video A_i from the trace if j > s then

that will not be viewed due to user swiping

 $R_{\text{prefetch}} \leftarrow \beta * (s-j)/s$

downloading chunk j

is the current video's ID

2: if $T(S_i, A_i, S_{i+1}) > 0$ then 3: $R_{\text{prefetch}} \leftarrow -1$

4: else if $A_i > h$ then

5.

10

11:

else

6: else

Input: A_i : video selected for prefetching; j: position of the chunk to be prefetched in A_i ; $T(S_i, A_i, S_{i+1})$: rebuffering time during

the number of remaining videos from the session trace; VideoId

 $R_{\text{prefetch}} \leftarrow -1 \quad \triangleright$ punishment for prefetching a video that

 $s \leftarrow \text{GetStayingTime}(A_i, \text{SessionTrace}) \triangleright \text{Get the time user}$

 $R_{\text{prefetch}} \leftarrow -1 \triangleright \text{punishment for downloading a chunk}$

⊳ Get

▷ punishment for rebuffering

Baselines:

- Oracle (Upper bound)
- Next-one
- S-3-3
- S-5-6
- S-5-12
- LiveClip [NOSSDAV'20]

Metrics:

- T: Rebuffering time (ms)
- D: Startup delay (ms)
- W_s : Swiping overhead (KB)
- W_e : Exit Overhead (KB)
- Negative utility:

 $U = T + D + 0.1 \times W_S + 0.1 \times W_e$

Dataset:

- Network traces: kuaishou trace and public trace
- Session traces

Network	Scheme	Rebuffering time (ms)	Startup delay (ms)	Swiping overhead (KB)	Exit overhead (KB)	Negative Utility	-
	Oracle	249	111	7	0	365 —	Upper
	Next-One	444	252	2116	21149	17616	bound
Vuoishou	S-3-3	594	141	194	475	1222	
Kuaisnou	S-5-6	464	114	224	3873	3559	
trace	S-5-12	435	118	343	7228	6061	
	LiveClip	488	129	1383	2965	3779	
	Alfie	318	121	247	543	1014	
	Oracle	119	75	4	0	197	Upper
	Next-One	232	170	2353	26078	21080	bound
Duhlia	S-3-3	303	90	221	506	922	
Fublic	S-5-6	232	81	244	3993	3395	
trace	S-5-12	217	81	371	7586	6085	
	LiveClip	246	86	1342	3146	3596	
	Alfie	156	83	271	407	733	

Table: Overall performance

Does Alfie generalize?

Alfie delivers 18.9%–26.8% improvement in overall utility over existing methods

- Exit overhead is non-negligible when designing a bandwidthefficient prefetching policy.
- Prefetching is intrinsically a **sequential** and **far-sighted** process which perfectly fits for DRL.
- A **high-fidelity** short video streaming **simulator** is important to train the prefetching algorithm.
- Alfie is able to **adapt** to variable and unseen environments by learning from massive past experiences.

Alfie: Neural-Reinforced Adaptive Prefetching for Short Videos

Thank you

{ jingzong.li@my.cityu.edu.hk }