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I - Short videos become more and more pervasive 1

The number of short video users has reached 873 million in China, representing 88.3%
of its total netizens .
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[1] Statistical Report on China's Internet Development in 2021, CNNIC



I - Prefetching Policy 5

To provide smooth playback and avoid rebuffering delay, prefetching
upcoming videos iIs commonly used In short videos.
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However, static policies used in production lead to substantial bandwidth
overhead, especially the exit overhead.



I - Motivation Measurement

Goal: To quantify the bandwidth overhead of static prefetching.

Data Preparation: We collect a production trace of over 400 million
sessions of short video viewing for a 24-hour period starting on March
1st, 2021 from a large short video company.

Schemes: we consider two representative instances of static policy:
* $-3-3: downloads the first 3 videos with first 3 chunks sequentially.
* S$-5-6: downloads the first 5 videos with first 6 chunks sequentially.

Metrics:

* T: Rebuffering time (ms)

* D: Startup delay (ms): the lag between the user swiping and playing

* Ws: Swiping overhead (KB): downloaded but unwatched content due to user swiping
* W,: Exit Overhead (KB): downloaded but unwatched content due to user exiting



I - Motivation Measurement

Key Finding 1.

Static prefetching results in significant bandwidth overhead,
iIncluding exit overhead.

Daily Exit  Annual Bandwidth Annual Exit
Overhead (TB)  Overhead Cost Overhead Cost
& Ratio Range ($1M USD) Range ($1M USD)

Daily Bandwidth
Overhead (TB)

Scheme

S-5-6 2795 1216 (43.5%) [~41, ~122] [~18, ~53]

S-3-3 1738 365 (21.0%) [~25, ~76] [~5, ~16]




I - Motivation Measurement

5
Key Finding 2:
User watching behavior i1s long-tailed.
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I - Motivation Measurement

Key Finding 3: Static policies do not adapt well.
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B B Alfie Design

Alfie: a bandwidth-efficient short video prefetching algorithm that can
dynamically adjust the prefetching strategy via reinforcement learning.
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B B Alfie Design ;

Algorithm 1 Calculation of reward Rpreferch
Input: A;: video selected for prefetching; j: position of the chunk

to be prefetched in A;; T'(Si, Ai, Si4+1): rebuffering time during
downloading chunk j

Reward Function Shaping: We design a reward

is the current video's ID
2: if T(Si, Ai, Siq1) > 0 then

function specialized for short video streaming. a1

5: Rprefereh +— —1 > punishment for prefetching a video that
will not be watched due to user exit

6: else

7 8 ¢ GetStayingTime(A;, SessionTrace) > Get the time user

Ridle (S'I:, Sz_l-]_) , lf A'L. —_ 0, N spcn;;;n;f:z;?. from the trace
R(Sfi 3 A'i 3 S?,+ 1 ) p— 9: Rperereh = —1 > punishment for downloading a chunk

that will not be viewed due to user swiping

Rprefetch (S 9 A?, y Si—l—]_ ) y otherwise. =P 0 clse

11: Rpeeterch = B* (5 —j)/s
12 return Rpefeich
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I - Evaluation — Overall performance

Baselines:

* Oracle (Upper bound)
* Next-one

* 5-3-3

* S-5-6

 S5-5-12

* LiveClip [NOSSDAV'20]

Metrics:

* T: Rebuffering time (ms)

D: Startup delay (ms)

Ws: Swiping overhead (KB)

W,: Exit Overhead (KB)
Negative utility:

U=T+ D + 0.1xWs + 0.1xW,

Dataset:

* Network traces: kuaishou trace and public trace
* Session traces

Rebuffering Startup  Swiping

Exit

Network | Scheme time delay overhead overhead Nétgi?ittwe
(ms) (ms)  (KB)  (KB) g
Oracle 249 111 7 0 365 —»
Next-One 4 252 2116 21149 17616
Kuaishou S-3-3 594 141 194 475 1222
trace S-5-6 464 114 224 3873 3559
S-5-12 435 118 343 7228 6061
LiveClip 488 129 1383 2965 3779
Alfie 318 121 247 543 1014
Oracle 119 75 + 0 197 —»
Next-One 232 170 2353 26078 21080
Public S-3-3 303 90 221 506 922
trace S-5-6 232 81 244 3993 3395
S-5-12 217 81 371 7586 6085
LiveClip 246 86 1342 3146 3596
Alfie 156 83 271 407 733

Table: Overall performance

Upper
bound

Upper
bound
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B B Does Alfie generalize?

Negative utility
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I - Takeaway

11

Exit overhead i1s non-negligible when designing a bandwidth-
efficient prefetching policy.

Prefetching is intrinsically a sequential and far-sighted process
which perfectly fits for DRL.

A high-fidelity short video streaming simulator is important to
train the prefetching algorithm.

Alfie I1s able to adapt to variable and unseen environments by
learning from massive past experiences.
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