
Faster and Stronger Lossless Compression with
Optimized Autoregressive Framework

Yu Mao∗, Jingzong Li∗, Yufei Cui†, and Jason Chun Xue∗
∗Department of Computer Science, City University of Hong Kong

Email: {yumao7-c,jingzong.li}@my.cityu.edu.hk, jasonxue@cityu.edu.hk
†School of Computer Science, McGill University Email:yufei.cui@mail.mcgill.ca

Abstract—Neural AutoRegressive (AR) framework has been
applied in general-purpose lossless compression recently to im-
prove compression performance. However, this paper found that
directly applying the original AR framework causes the dupli-
cated processing problem and the in-batch distribution variation
problem, which leads to deteriorated compression performance.
The key to address the duplicated processing problem is to
disentangle the processing of the history symbol set at the input
side. Two new types of neural blocks are first proposed. An
individual-block performs separate feature extraction on each
history symbol while a mix-block models the correlation between
extracted features and estimates the probability. A progressive
AR-based compression framework (PAC) is then proposed, which
only requires one history symbol from the host at a time rather
than the whole history symbol set. In addition, we introduced
a trainable matrix multiplication to model the ordered impor-
tance, replacing previous hardware-unfriendly Gumble-Softmax
sampling. The in-batch distribution variation problem is caused
by AR-based compression’s structured batch construction. Based
on this observation, a batch-location-aware individual block is
proposed to capture the heterogeneous in-batch distributions
precisely, improving the performance without efficiency losses.
Experimental results show the proposed framework can achieve
an average of 130% speed improvement with an average of 3%
compression ratio gain across data domains compared to the
state-of-the-art.

Index Terms—auto-regressive, general-purpose, lossless data
compression, hardware friendly, neural networks, computational
efficient

I. INTRODUCTION

With the proliferation of IoT infrastructures and the 5G
techniques, data volume that needs to be transmitted and
stored has expanded considerably [1], [2]. General-purpose
lossless data compression techniques are potential solutions to
reduce data sizes. However, standard compressors like Gzip [3]
and Zstandard [4] have limited performance on multi-modal
data streams due to their dictionary-based nature. The rapid
development of deep learning techniques raised a number of
neural-network-based compressors. Those compressors model
the compression task as an AutoRegressive (AR) sequential
modeling problem. AR-based compressors take a set of adja-
cent compressed symbols as input to estimate the probability
of the following symbol (referred to as ”history symbols” and
”target symbol” in the rest of the paper), and can achieve
substantially improvement on compression ratios. Nonetheless,
the running speed of these deep learning-based compressors
is far from satisfactory.

Most of the work to date has focused on slimming the
model architecture. NNCP [5] has a considerable dictionary
size of 16384 and a 55M transformer model, leading to a 0.48
KB/s compression speed. Byte stream compressors have been
proposed to overcome this problem, as they treat each byte as
a symbol and contain smaller dictionaries. Dzip [6] can reach
6.66KB/s, while TRACE [7] increases the compression speed
to 15.8KB/s. Recently, the Multi-Layer Perceptron (MLP)-
based compressor OREO [8] explicitly defined the importance
order at the beginning of the model to replace attention,
achieving a speed of 30KB/s. Although MLP is hardware
friendly, OREO’s ordered importance module is based on
Gumble-Softmax sampling [9], thus OREO is not yet hardware
compatible [8].

A blind spot of these state-of-the-arts is the adaptability
of AR structures and compression processes. Section III-A
summarize two problems observed in the current design:

1) Duplicated processing problem: Existing AR frameworks
use a set of history symbols to estimate the probability of
a target symbol. This causes inputs at neighboring time
steps to contain significant overlap.

2) In-batch distribution variation problem: The specific
batch construction of AR-based compression framework
leads to a phenomenon: varied symbol distributions for
different positions in the batch. The current design treats
different in-batch positions indiscriminately.

This paper is motivated by the aforementioned observations.
We propose PAC, a Progressive Ar-based Compression frame-
work with a suitable model that can address the duplicated
processing problem and in-batch distribution variation prob-
lem, while eliminating hardware-unfriendly Gumble-Softmax
sampling.

To alleviate the duplicated processing problem, this work
disentangles the probability estimator into two-stage: individ-
ual block and mix block. The individual block response for
feature extraction on individual symbols while the mix block
response for modeling correlation between extracted features.
This operation guarantees separate processing of history sym-
bols on the input side. A progressive AR compression frame-
work is further established on proposed individual-mix block.
This framework caches the extracted features for reutilization.
Thereby, to compress one target symbol, only one latest history
symbol needs to be transferred to GPU and performs feature

extraction. Features of the rest of the history symbol set can
be retrieved from the cache, therefore omit duplicate transmits
and feature extractions. On top of current design, a simple
and trainable ordered mask generator is proposed to replace
Gumble-Softmax sampling. Experiments show that trained
ordered masks can achieve the same results as sampled masks
but the generation is 20x faster. Another consequence of this
modification is that PAC’s probability estimation model is
now a pure hardware-compatible model, containing only basic
matrix multiplication and addition operations. This opens up
the opportunity for future neural network-based compressors
to offload to edge devices or storage hardware such as SSDs.
To address the in-batch distribution variation problem, we pro-
pose a module that can extract location-specific discriminative
features within a batch. The experimental results demonstrate
that the proposed framework is able to achieve an average of
130% faster compression across data domains, with an average
compression ratio improvement of 3%.

II. RELATED WORK

Recently, a new generation of deep-learning-based lossless
compressors offered higher compression ratios. One of the
categories is Variational Auto-encoder (VAE) with bits-back
coding [10], [11]. The main application of these compressors
is in image. Another category considers the input as an 1D
sequence and use auto-regressive (AR) methods to estimate
the probability of occurrence of the current symbol directly
using its context [6]–[8], [12], [13], and can deal with any
data without specialized design.

AR-based compressors have been improved over the past
few years. Table. I lists current AR-based compressors’ com-
pression speed on the same NVIDIA Geforce RTX 2080
GPU platform. Cmix [5] was proposed in 2015, starting
applying Long Short-Term Memory in AR-based compression.
NNCP [13] utilizes transformers to estimate the probability,
while Dzip [6] uses Recurrent Neural Networks. TRACE [7]
designed a slimmed transformer to accelerate the compression
procedure. OREO [8] further builds an order model to replace
attention to achieve faster compression speed. Nonetheless,
even the fastest OREO can only compress ∼1.77 MB per
minute, which means ∼30KB per second. Proposed method
boosts the compression speed to 71.42KB/s.

TABLE I: Speed of current AR-based compressors.

Compressor Cmix NNCP Dzip TRACE OREO PAC
Speed(KB/s) 0.67 0.48∼2.04 6.66 15.87 30.3 71.42

III. PAC COMPRESSION FRAMEWORK

This section presents the motivation and the detailed design
of PAC. The rest of the section starts with analyzing the
current AR-based compression architecture, pointing out the
duplicated processing problem and in-batch distribution vari-
ation problem. Then a progressive compression framework is
proposed with ”individual-mix” architecture, which fundamen-
tally resolves the duplicated processing problem. Furthermore,

the original Gumble-Softmax sampling module is replaced
with a simple trainable matrix, substantially reducing the
computational complexity and providing the opportunity to run
on resource-constrained edge devices. Finally, we propose a
batch-location-aware structure to address the in-batch distri-
bution variation problem, which can improve the compression
ratio without computational loss.

A. Background and Motivation
We start by motivating PAC with an analysis of conventional

AR-based compression process. Some basic concepts are
emphasized:

a) Symbol: The basic process unit in compression. Typ-
ical categories are bits, bytes, or tokens (a combination of
bytes).

b) Target symbol: The symbol to be compressed, denoted
as xi. The neural model estimates xi’s probability and feeds
it into an arithmetic coder.

c) History symbols: A set of symbols adjacent to the
target symbol, denoted as xi−k, ..., xi−1, where k is the length
of history symbol set. These symbols are the actual input to
the model when xi is compressed. In other words, the feature
of xi is extracted from its history symbols, but xi itself is not
visible to the model. The estimated probability of xi can be
expressed as

Pe (xi) = P (xi | xi−1, xi−2, . . . , xi−k) (1)

This concept is also referred to as ”sequence” or ”input
sequence” in the rest of the paper.

Suppose there is an input sequence X =
{x0, x1, x2, ..., xB∗N} on host for compression. The
compression process comprises of the following:

1) Structured batch construction. As illustrated in Figure 2,
X is chunked into B sub-sequences of length N to
parallize compression procedure. The compressor collects
symbols at the same location in each sub-sequence as a
batch. For instance, at timestep i, there are B symbols
compressed in timestep i, namely xi, xi+N , xi+2N ,
. . .xi+(B−1)N . And these symbols form the batch. At
timestep i+1, the compressor compresses xi+1, xi+N+1,
xi+2N+1, . . . , xi+(B−1)N+1, which constitutes the cur-
rent batch.

2) Probability estimation. To compress xi, the neural net-
work first estimates Pe(xi) using xi−1, . . . ,xi−k. At
this stage, xi−1, . . . ,xi−k are transferred from host to
GPU and fed into the model. No matter which model is
used, the final output of the model is Pe(xi). NNCP and
TRACE use a transformer to build correlations between
history symbols, while OREO provides a more efficient
way using ordered masks and MLP. Our approach is also
MLP-based but more efficient than OREO by individual-
mix block, trainable ordered mask, and batch-location-
aware design.

3) Coding: Pe(xi) and xi are passed to arithmetic coder for
entropy coding. Arithmetic coding is applied in this work
following the settings in [6]–[8], [13].

PE

𝑥!𝑥!"#𝑥!"$𝑥!"%

𝑃&(𝑥!-$) 𝑃&(𝑥!-#) 𝑃&(𝑥!) 𝑃&(𝑥!(#)

𝑥!(#𝑥!")

…

… …

…PE PEPE

PEPEPE PE

FE

𝑥!𝑥!"#𝑥!"$𝑥!"%

𝑃&(𝑥!-$) 𝑃&(𝑥!-#) 𝑃&(𝑥!) 𝑃&(𝑥!(#)

𝑥!(#𝑥!")

…

… …

…FE FEFE

FMFMFM FM

CPU
GPU

PE: Probability Estimation, FE: Feature Extraction, FM: Feature Mixture

Fig. 1: Illustration of duplicated processing problem and it is
solved. The left figure shows the probability estimator under
the traditional auto-regressive compression framework, which
requires repeated transmission and processing of a symbol,
and the right figure shows the proposed framework, in which
a symbol is transmitted and extracted only once.

Discussion. Standard AR-based compression frameworks
have overlaps between inputs on neighboring timesteps. As
shown in Figure 1, to compress xi, xi−1, xi−2, xi−3 are sent
to the GPU for probability estimation. At next timestep, to
compress xi+1, xi, xi−1, xi−2 are sent to GPU for probability
estimation. Here xi−1, xi−2 are sent and processed repeatedly.
Following this setting, if the size of history symbol set is set to
k, a history symbol would be sent and processed for k times
in total. This phenomenon is noted as ”duplicated processing
problem”. In Dzip, TRACE and OREO, k is maximum set as
16, which means 15 symbols are duplicated between input on
neighboring timesteps, resulting in 93.75% overlap ratio. For
NNCP, which takes 64 as k, the overlap ratio raises to 98.44%.

The duplicated processing problem arises from the idea
of treating all history symbols as a whole. For example,
the attention-based compressor computes the history symbols’
query, key and value in pairs at every iteration. In this way,
queries, keys, and values are recalculated every time a new
history symbol is added. Another example is the MLP-based
compressor OREO. OREO first projects history symbols to
vectors, then concatenates these vectors to one large feature
vector to proceed. This structure dictates that OREO must start
over for all history symbols when a history symbol changes.

Structured batch construction is AR-based compression’s
another remarkable characteristic. As mentioned in Structured
batch construction, the input sequence is broken into several
sub-sequences for parallel compression and decompression.
The compressor compresses one symbol from each sub-
sequence within one timestep. These symbols are usually
located at the same position in the sub-sequence, as illustrated
in Figure 2. At the next timestep, the compressor will compress
the symbols at the next adjacent position in each sub-sequence.
This structured batch construction leads to batch properties
distinct from other machine-learning tasks:

1) Distribution between sub-sequences is varied because the
semantic meanings of sub-sequences are much different.
Since each sub-sequence corresponds to a specific po-
sition in the batch, we can say there is a bias in the
distribution of symbols at different positions in the batch.

Chunk

Batch 1 Batch 2 Batch 3

Chunk Chunk

Fig. 2: Illustration of structured batch construction and in-
batch distribution variation problem. The x-axis of the distri-
bution figure is the byte value, and the y-axis is the number
of byte value.

2) Distribution of symbols that appear consecutively at the
same batch position are usually close because they be-
long to the same sub-sequence, not to mention adjacent
symbols also have overlaps in their history symbol sets.

Figure 2 briefly illustrates structured batch construction of
a 107 bytes ImageNet data, with the batch size set to 4096.
We uniformly sample the data distribution of 1000th, 2000th,
3000th, and 4000th sub-sequences, count the frequency of
occurrences of bytes, and generate distributions. Summarizing
from Figure 2, the distribution of symbols in the four selected
sub-sequences is highly varied. We believe each batch position
should have its own parameters when designing a general
lossless compression model. These particular parameters can
help the model distinguish different sub-sequences, resulting
in better compression performance.

B. Progressive Compression Architecture

The key to addressing the duplicated processing problem
is disentangling history symbol set’s process. Therefore when
the history symbol set changes, the probability estimator does
not have to recompute and re-transmit the full history symbol
set. Nonetheless, this solution is inconsistent with current AR
probability estimation designs that aim to entangle the inputs
and extract correlations.

We reformulate the AR probability estimation in general-
purpose lossless compression as a two-stage task: feature
extraction and correlation modeling. These two parts were
implicitly mixed in early compressors. We decouple these two
parts to strip out the feature extraction part, which can be
executed regardless of the relation between symbols. Thus,
feature extraction of the historical symbols can be conduct
separately at the beginning. After separate feature extraction,
the correlation modeling part entangles features and performs
probability estimation as usual.

Following the above definition, the basic module of the
proposed model, individual-mix block, is two-fold: The first
part independently extracts features for each history symbol,
and the second part fuses features and performs probability
estimation, named as the individual block and mix block. The
individual-mix block can be stacked for further performance
improvement. Also, the parameter of proposed block can
be dynamically adjusted based on the current compression
requirements, which is left as our future work. Figure 3

… …

Output Layer

Mix-Block

Cached Features

Indiv.

Indiv.

Mix-Block

Cached features

Feature
cache Area

Coder

Indiv.

Indiv. x Batch Size

x Batch Size

… …
… …

CPU
GPU

Fig. 3: Illustration of the progressive AR-based compression
framework.

shows an example that stacks two individual-mix blocks with
different output sizes.

A feature cache is allocate on GPU as the compression
begins. Given the history symbol set length k, feature dimen-
sion v, batch size b, and data type double, the feature cache’s
storage overhead is 4(k ·v ·b) bytes. For a compression process
where k = 16, v = 16, b = 8192, such storage overhead is
8MB, which can be negligible comparing with model memory
usage, which is usually gigabytes level.

The progressive compression framework can be described
as follows: For every iteration, the individual block extracts
feature independently for one distinct history symbol. That
is, only one symbol needs to be transmitted and processed per
compression iteration. The newly extracted feature is stored in
the feature cache. If the number of features in feature cache
exceeds k, the oldest feature is discarded. Mix block merges
the new feature with other history symbol features fetched
from the cache and finally performs probability estimation.
Detailed progressive compression process for one individual-
mix block is described in Algorithm 1.

MLP is chosen as the basic structure. The individual block
consists of one fully connected layer, while the mix block
contains two. Both blocks contain a layernorm at the end.
MLP-based architecture lacks the ability to estimate attention
on input sequences, therefore, needs an explicit module to
build the ordered importance. Previous approaches utilize
Gumble-Softmax sampling, which is generally difficult to
apply to edge devices like FPGAs. We replace it with a simple
matrix multiplication in the next section.

C. Learned ordered importance

The ordered mask is a crucial component of an MLP-based
compressor. It highlights the prominent history symbols and is
computationally simpler than the transformer’s attention mod-
ule. The general form of an ordered mask is a one-dimensional
vector containing k importance scores for k history symbols.

Algorithm 1: Progressing Compression Process for
one individual-mix block.
Input: Byte Stream{x0, x1, ..., xend}, History symbol

set length k.
Output: Compressed file.

1 i = 0;
2 Model.initialize();
3 Cache.initialize();
4 while 0 <= i < k do
5 F (xi) = Model.FeatureExtract(xi);
6 Cache.push(F (xi));
7 Encode(xi, 1

256);
8 i+ = 1;
9 end

10 while k <= i <= end do
11 F (xi−1) = Model.FeatureExtract(xi−1);
12 Cache.pop(F (xi−k−1));
13 Cache.push(F (xi−1));
14 Mask = Model.OrderMask(F (xi−1), . . . , F (xi−k));
15 F (xi−1), . . . , F (xi−k) *= Mask;
16 Pe(xi) = Model.Mix(F (xi−1), . . . , F (xi−k));
17 Encode(xi, Pe(xi));
18 Model.backward(xi, Pe(xi), loss function);
19 i+ = 1;
20 end

Values in ordered mask should be an approximate uphill trend
as shown in Figure 4, which indicates closer symbols usually
have a substantially larger influence on the target symbol.

Previous ordered masks are generated by the Gumble-
Softmax sampling, which requires complex operations such as
log and exponential function. This makes the previous general-
purpose compressor incompatible with hardware that can only
perform matrix addition and multiplication.

To address this issue, a trainable 1D vector is introduced
to replace the Gumble-Softmax sampling. Instead of assigning
importance to each history symbol, we assign learnable impor-
tance scores on the dimension of the extracted features, after
the first individual layer. The ordered importance is modeled
as:

F (xi−1), . . . , F (xi−k) = W · {F (xi−1), . . . , F (xi−k)} (2)

where F (xi−1) is the extracted feature of xi−1 and W is
learned ordered importance. W is joint optimized with other
parameters. We put the ordered mask after the first individual
layer since it will be applied to the whole history symbol set.
Thus the operation has to wait until the first individual layer
finished to obtain the features of other history symbols from
the cache, as in Figure 3.

As shown in Figure 4, the trained ordered mask can also
generate an uphill ordered importance mask. Moreover, the
speed of the proposed trained ordered mask is much faster.
For samples with a batch size of 512, the proposed method
can achieve 0.02 ms per batch, while the Gumble-Softmax
sample method takes 0.3 ms.

50 100 150 200 250
Feature Dim

0.5

1.5
Im

po
rta

nc
e Sampled Ordered Mask

(a) Gumble-Softmax sampled or-
dered mask.

100 200
Feature Dim

0.5

1.5

Im
po

rta
nc

e Trained Ordered Mask

(b) Proposed learned ordered
mask.

Fig. 4: Examples of sampled ordered masks and proposed
trained ordered masks.

D. Batch-location-aware Individual Layer

To address the in-batch distribution variation problem an-
alyzed in Section III-A, a batch-location-aware compression
model is proposed to capture the in-batch distribution varia-
tion. Based on the proposed model architecture, the individual
layer is modified to assign distinct parameters for different
positions in the batch. We only modify the individual block
because it extracts the features of symbols directly, thus being
more sensitive to the symbol distribution. The mix block is
mainly responsible for feature fusion and remains as before.

The batch-location-aware modification does not increase
FLOPs during inference, despite the increased parameters.
This is because the amount of computation remains the same.
Assuming batch size is N , if only one set of parameters
exists, then this set of parameters must be executed N times
for N positions in the batch. Modified batch-location-aware
individual layer has N sets of parameters, but each parameter
set only needs to compute once on one element in the batch,
so the overall computation remains the same. Also, the final
model size which increases with the growth of parameters
should be considered. Nonetheless, the dynamic compression
process randomly initializes the probability estimation model
on both the transmitter and receiver, therefore eliminating the
need to transmit the model [14]. In other words, the model
size will not affect compression ratios.

IV. EXPERIMENTAL EVALUATIONS

A. Experimental Setup

Experiments are benchmarked on seven datasets from var-
ious domains. Descriptions of datasets are provided in Ta-
ble. II. We use Compression Ratio, Peak GPU Memory Usage,
Compression Speed, Latency, and the FLOPs (Floating point
operations) as metrics. All experimental result is an average
of ten repetitive experiments and conducted on an 11GB
NVIDIA Geforce RTX 2080 GPU. The proposed method is
implemented using Libtorch [15] in C++.

To ensure fairness, all deep-learning methods follow the
dynamic compression procedure, which means no pretraining
exists. If not mentioned, the history symbol’s number and fea-
ture dimension are both 16, the mix-block’s first layer output
dimensions are settled as 4096. The experimental probability
estimator contains four individual-mix blocks with individual
block in/output size=[16, 32, 64, 128]. This is the same as
OREO’s experimental model settings. Adam is applied with a
learning rate=0.001.

TABLE II: Description of Compression Datasets.

Name Size Description
Book 1000MB First 1000M byte of BookCorpus [16].
Enwik9 1000MB First 1000M byte of the English Wikipedia [17].
Float 1.1GB Spitzer Space Telescope data. [18].
Sound 842MB ESC [19] Dataset for environmental sound.
Image 1.2GB 100000 pictures from ImageNet.
Backup 1000MB 1000M byte random extract from a disk backup.
Silesia 206MB A compression benchmark [20].

TABLE III: Peak GPU memory usage, Inference Latency and
FLOPs of GPU-based method with batch=128. The total 2080
Ti memory size is 10.75G.

Compressor Peak GPU Memory
Usage (GB) Inference (ms) FLOPs

NNCP 7.75 95.67 15.83×1010

Dzip 6.39 5.82 7.48×1010

TRACE 2.02 2.08 0.34×1010

OREO 1.18 1.54 0.12×1010

PAC 1.07 1.54 0.1×1010

B. Efficiency Evaluations

We first represent the efficiency metrics of GPU-based com-
pressors in Table. III, including Peak GPU Memory Usage,
Model Latency, and the FLOPs.

Under batch size 128, PAC only takes 1.07G GPU memory,
which is half of TRACE and 1/6 of Dzip. PAC’s latency
and the number of FLOPs also shows comparable results
with the state-of-the-art AR-based methods. In Table. III, PAC
has the same inference time as OREO. This is because the
batch size=128 is too small for these two compressors, so
the GPU’s processing units are not fully utilized. When batch
size=8192, the inference time of PAC is 18.2ms while OREO
takes 23.5ms, which is notably faster than OREO.

Next, we investigate the time breakdown of each key
component. Figure 5a shows the host-GPU transfer time for
standard AR-based compression and PAC. Transfer time has
been reduced by a large margin in all batch settings, which
demonstrates proposed progressive compression framework’s
effectiveness on data tranmission aspect. Figure 5b shows the
proposed trainable ordered mask can reduce ordered mask
generation time from ∼0.4 to ∼0.1 for large batch size 8192.
When the batch size is 512, the ordered mask generation time
can be reduced from 0.3ms to 0.01ms.

We test the inference speed of individual blocks under
different configurations in Figure 5c. The definition of m ∗ n
on the x-axis is m history symbols with each feature vector
dimension is n. A detailed explanation can be found in [8].
Compared with OREO’s branch layer, the proposed individual
block is significantly faster across all configurations. The
speed of batch-location-aware individual layers in Pytorch
and libtorch is also reported. We can see that batch-location-
aware individual block in python is slightly slower than the
original individual block, but libtorch version can obtain the
same speed. This demonstrates proposed batch-location-aware
solution does not increase computational loads.

512 1024 2048 4096 8192
Batch

1

2

ms
Proposed Compressor
Standard AR Compressor

(a) Host-GPU data transmit time.

512 1024 2048 4096 8192
Batch

0.1
0.2
0.3

0.5ms

Sampled Trained

(b) Ordered mask generation time.

16*16 8*32 4*64
Layer Shape

1
2
3
4
ms

Individual
Individual+batch Pytorch
Individual+batch Libtorch
OREO branch layer

(c) Individual layer inference time.

Fig. 5: Efficiency validation on proposed techniques.

Enwik9 Book Image Sound Float Silesia Backup
Dataset

1

3

6

Co
m

pr
es

sio
n
Ra

tio

No Batch
BS 512
BS 1024

BS 2048
BS 4096
BS 8192

Fig. 6: Compression Ratio for proposed model with different
batch settings.

C. Compression Ratio Evaluation

We first report the evaluation of the compression ratio for
the proposed model with different batch settings in Figure 6.
After adding batch-location-aware, we can see that although
the impact of the batch size varies from data to data, the
compression ratio improvement brought by batch-location-
aware components is general on all data types.

Table. IV presents the compression ratio of the proposed
compressor and other state-of-the-art compressors. Gzip lags
far behind other compressors in compression ratios for all data
domains. Zstd-19 and 7z are more advanced. Nevertheless,
deep-learning compressors can easily outperform these non-
deep-learning compressors. TRACE leverages a slim trans-
former structure to achieve better compression ratios with
faster speeds. OREO solved the problem of TRACE and
improved the compression ratio in all data.

PAC significantly improved over OREO for data compres-
sion in all domains. If we use OREO as the baseline, PAC
has a 5.1% and 2.22% compression improvement on Enwik9
and Book. On Image and Float, the improvements are 5.38%,
and 0.78%, respectively. For heterogeneous data Silesia and
Backup, PAC is 2.68% better than OREO on both dataset,
respectively.

V. CONCLUSION

This paper proposes PAC, a fast and efficient compres-
sion framework by addressing the incompatibility between
the AutoRegressive framework and general-purpose lossless

TABLE IV: Compression Ratios on Large Datasets.

Methods Homogeneous Data Heterogeneous Data
Enwik9 Book Sound Image Float Silesia Backup

Gzip 3.09 2.77 1.37 1.14 1.06 3.10 1.28
7z 4.35 3.80 1.59 1.38 1.14 4.25 1.56
Zstd-19 4.24 3.73 1.40 1.16 1.10 3.97 1.36
Dzip 4.47 3.95 2.04 1.72 1.26 4.78 1.78
TRACE 5.29 4.58 2.16 1.81 1.28 4.63 1.78
OREO 5.68 4.94 2.25 1.86 1.28 4.86 1.87
PAC 5.97 5.05 2.25 1.96 1.29 4.99 1.92

compression. This paper addresses two problems: duplicated
processing problem and in-batch distribution variation prob-
lem. This paper first proposes a progressive compression
framework with an individual-mix block to alleviate the du-
plicated processing problem, and a trainable matrix multi-
plication operation to replace hardware-unfriendly Gumble-
Softmax sampling. The in-batch distribution variation problem
is mitigated by capturing the local distribution of different
sub-sequences, which can improve compression performance
without computational loss. Experimental results show that
PAC can achieve average to 130% faster compression speed
and 3% higher compression ratio than SOTA for various data
types.

REFERENCES

[1] DKRZ, “Unique status among german high-performance computing
centres.” 2021.

[2] Wikipedia, “Amazon web serivce.” 2020.
[3] P. Deutsch, “GZIP file format specification version 4.3,” RFC, vol. 1952.
[4] Y. Collet, “Zstd github repository from facebook.,” 2016.
[5] B. Knoll, “Cmix.” 2014.
[6] G. Mohit et al., “Dzip: Improved general-purpose loss less compression

based on novel neural network modeling,” in DCC’2021.
[7] Y. Mao et al., “Trace: A fast transformer-based general-purpose lossless

compressor,” in WWW, pp. 1829–1838, 2022.
[8] Y. Mao et al., “Accelerating general-purpose lossless compression via

simple and scalable parameterization,” in MM’22, pp. 3205–3213, 2022.
[9] Cui et al., “Fully nested neural network for adaptive compression

and quantization,” in Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, pp. 2080–2087,
International Joint Conferences on Artificial Intelligence Organization,
7 2020.

[10] Kingma et al., “Bit-swap: Recursive bits-back coding for lossless
compression with hierarchical latent variables,” in ICML, pp. 3408–
3417, PMLR, 2019.

[11] van den Berg et al., “Idf++: Analyzing and improving integer discrete
flows for lossless compression,” in ICLR, 2020.

[12] B. Knoll, “Tensorflow-compress,” 2016.
[13] F. Bellard, “Nncp: Lossless data compression with neural networks..”

2019.
[14] C. Zhang et al., “Osoa: One-shot online adaptation of deep generative

models for lossless compression,” NIPS, 2021.
[15] Paszke et al., “Pytorch: An imperative style, high-performance deep

learning library,” NIPS, 2019.
[16] Vaswani et al., “Attention is all you need,” NIPS, vol. 30, 2017.
[17] M. Mahoney, “Large text compression benchmark.” 2006.
[18] M. Burtscher et al., “Fpc: A high-speed compressor for double-precision

floating-point data,” IEEE Transactions on Computers, 2009.
[19] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,”

2015.
[20] S. Deorowicz, “Silesia dataset.” 1985.

	Introduction
	Related work
	PAC Compression Framework
	Background and Motivation
	Progressive Compression Architecture
	Learned ordered importance
	Batch-location-aware Individual Layer

	Experimental Evaluations
	Experimental Setup
	Efficiency Evaluations
	Compression Ratio Evaluation

	Conclusion
	References

